PMT

1.	(a)	A = Coccus				
		B = Bacillus				
		C = Sp	C = Spirillum [
	(b)	Gram +ve violet/purple (not:blue)				
		Gram –ve red				
	(c)	Facultative anaerobes, grow better in presence of <u>oxygen</u> but can survive without it;				
		Obligate anaerobes, cannot survive in presence of oxygen.				
	(d)	(i)	do not put culture bottle cap onto bench;			
			flame mouth of tube;			
			flame (inoculating) loop;			
			lift Petri dish lid at an angle; (not: in context of pouring plate) use a pressure cabinet / sterile cabinet / near Bunsen for updraft; (not: use sterilised Petri dishes/autoclave/equipment)			
			[Ma:	x 4]		
		(ii)	Sealed: anaerobic conditions encourage pathogenic bacteria;	[1]		
			Body temperature: encourages (human) pathogenic bacteria.	[1]		
	(e)	(i)	B, clear distinct colonies which can be counted / A too many colonies merged, to count accurately, C not enough;	ny colonies / [1]		
		(ii)	Plate B 200 bacteria per cm ³ ,			
			B was diluted by hundredfold twice dilution factor of <u>10000</u> ;			
			$200 \times 100 = 2 \text{ million}/ 2 \times 10^6;$			
			1 mark for method look for 200 and 10000,			
			Give 2 marks for 2 million	[2]		

PMT

2. (a) P = phosphate (not: phosphoric acid)

Q = nitrogenous base / organic base / adenine;

- R = Ribose / pentose (sugar). [3]
- (b) (i) Supplies energy; <u>all</u> reactions; in <u>all</u> cells; [Max 2] (not: produces)
 - Soluble; easily transported across membranes; easily hydrolysed; energy released in useable amounts; several methods of regeneration; link between energy production and energy use; only one enzyme needed [Max 3]
- (c) Glycolysis; glucose to pyruvic acid/ pyruvate; (ATP produced) substrate level phosphorylation; pyruvic acid converted into lactic acid (accept ethanol); from reduced NAD; so that NAD regenerated; allows glycolysis to continue. (not: NADP/glucose to lactic acid/ref. number ATP produced) [Max 4]
- **3.** (a) A = Grana / thylakoid membranes;
 - B = Stroma;
 - A = Grana / thylakoid membranes;
 - B = Stroma;

C = Starch grain, clear area in chloroplasts;

[5]

- (b) (i) P = light energy / photons of light;
 - (ii) Electron acceptors/carriers;
 - (iii) Electrons flowing along an electron transport chain / cytochromes; (not: chemiosmosis)
 - (iv) Oxygen
 - (v) NADP / NADPH⁺ / reduced NADP / NADPH2;
 - (vi) Electrons from photolysis replacing electrons in chlorophyll of PS II [6]
- (c) a. Light dependent reactions do not take place in correct context;
 - b. ATP;
 - c. reduced NADP not produced;
 - d. Calvin cycle stops; (not: dark reactions)
 - e. GP not converted into TP/GALP;
 - f. no hexose sugar made;
 - g. no respiratory substrate / respiration stops [Max 5]

 (a) Transmit impulses between neurones / from neurone to muscle; (not: signal) One direction only / polarity;

Filter out low level stimuli/background;

Protect from over stimulation;

(Act as junctions) / additive effect of stimuli from different neurones/ Spatial summation;

Accept reference to inhibitory synapses;

Temporal summation;

[Max 3]

- Nerve net, neurones shorter; branched; can transmit in both directions; facilitation; slower transmission; Stimuli pass in all directions from point of stimulation; non-myelinated; one type of cell. Converse vertebrate. Matched points [Max 2]
- (c) (i) As fibre diameter increases speed of conduction increases;

Much more rapid response in myelinated;

Below a certain diameter (1.1 um) non myelinated faster; (not: Below a certain diameter no conduction) Myelinated linear, non-myelinated rapid at start then plateau; [Max 3]

- (ii) Conduct slower than non myelinated. [1]
- (iii) Increase diameter; myelination, higher (body) temperature; longer distance between nodes / fewer nodes.
 Saltatory conduction [3]

(a)	(i)	cortex	[1]
	(ii)	Water has been absorbed / less volume of water;	[1]
	(iii)	C	
		B, A	
		E acc C	
		F or G	[4]
	(iv)	A = decrease	
		C = decrease	
		D = decrease	
		E = increase	[4]
(b)	(i)	Loop of Henle longer;	
		Counter current multiplier; (not: description)	
		Creates region of (very) low water potential around loop;	
		More water reabsorbed from collecting duct;	
		Reference to low filtration rate;	[Max 2]
	(ii)	Metabolic water / water from metabolism;	
		Respiration;	
		Fats / oils.	[2]

5.

- 6. (a) A. Lag phase, Log phase / exponential- term in correct context;
 - B. Induction DNA / gene switching / DNA unzipping;
 - C. Enzyme production/protein synthesis;
 - D. Substrate breakdown / getting used to growth medium;
 - E. Slow population growth;
 - F. Rapid cell division;
 - G. Abundance of nutrients / oxygen / low levels of waste products / no environmental resistance;
 - H. Cell production exceeds cell death; (not: ref. birth/immigration/emigration)
 - I. Population doubles per unit time;
 - J. Population increases then begins to slow;
 - K. Lack of nutrients / accumulation waste products / environmental resistance; (not: ref space)
 - L. Stationary phase;
 - M. Cell production = cell death; (not: ref birth, penalise once only)
 - N carrying capacity;
 - O. lack of nutrients / accumulation of waste products if not given as K;
 - P Death phase;
 - Q Cell death exceeds cell production;

PMT

- (b) A. Decomposition / putrefaction;
 - B. Recycling nutrients;
 - C. Breakdown of organic materials into inorganic / suitable e.g.;
 - D. Nitrifying bacteria;
 - E. Nitrosomonas, Nitrobacter;
 - F. ammonium compounds to nitrites;
 - G. nitrites to nitrates;
 - H. ammonium compounds to nitrates if no F/G;
 - I. Nitrogen fixing bacteria;
 - J. atmospheric nitrogen converted into organic nitrogen / e.g.;
 - K. free living azotobacter;
 - L. rhizobium;
 - M. root nodules of (legumes);
 - N denitrification

[Max 8]

- O. encourage aerobic conditions (to stop denitrifyers) / ploughing;
- P drainage for aerobic conditions to stop denitrifyers;
- Q grow leguminous crops / add organic waste products / manure / urea etc;

[Max 2]