BY4

1. (a) $\mathrm{A}=$ Coccus
$B=$ Bacillus
C = Spirillum
(b) Gram +ve violet/purple (not:blue)

Gram -ve red
(c) Facultative anaerobes, grow better in presence of oxygen but can survive without it;

Obligate anaerobes, cannot survive in presence of oxygen.
(d) (i) do not put culture bottle cap onto bench;
flame mouth of tube;
flame (inoculating) loop;
lift Petri dish lid at an angle;
(not: in context of pouring plate)
use a pressure cabinet / sterile cabinet / near Bunsen for updraft;
(not: use sterilised Petri dishes/autoclave/equipment)
[Max 4]
(ii) Sealed: anaerobic conditions encourage pathogenic bacteria;

Body temperature: encourages (human) pathogenic bacteria.
(e) (i) B, clear distinct colonies which can be counted / A too many colonies / merged, to count accurately, C not enough;
(ii) Plate B 200 bacteria per cm^{3},

B was diluted by hundredfold twice dilution factor of $\underline{10000 ;}$
$200 \times 100=2$ million/ 2×10^{6};
1 mark for method look for 200 and 10000,
Give 2 marks for 2 million
2. (a) $P=$ phosphate (not: phosphoric acid)
$Q=$ nitrogenous base / organic base / adenine;
$R=$ Ribose / pentose (sugar).
(b) (i) Supplies energy; all reactions; in all cells;
[Max 2] (not: produces)
(ii) Soluble; easily transported across membranes; easily hydrolysed; energy released in useable amounts; several methods of regeneration; link between energy production and energy use; only one enzyme needed [Max 3]
(c) Glycolysis; glucose to pyruvic acid/ pyruvate; (ATP produced) substrate level phosphorylation; pyruvic acid converted into lactic acid (accept ethanol); from reduced NAD; so that NAD regenerated; allows glycolysis to continue. (not: NADP/glucose to lactic acid/ref. number ATP produced)
3. (a) $\mathrm{A}=\mathrm{Grana}$ / thylakoid membranes;

B = Stroma;
A = Grana / thylakoid membranes;
B = Stroma;
C = Starch grain, clear area in chloroplasts;
(b) (i) $\mathrm{P}=$ light energy / photons of light;
(ii) Electron acceptors/carriers;
(iii) Electrons flowing along an electron transport chain / cytochromes; (not: chemiosmosis)
(iv) Oxygen
(v) NADP / NADPH ${ }^{+}$/ reduced NADP / NADPH2;
(vi) Electrons from photolysis replacing electrons in chlorophyll of PS II [6]
(c) a. Light dependent reactions do not take place - in correct context;
b. ATP;
c. reduced NADP not produced;
d. Calvin cycle stops; (not: dark reactions)
e. GP not converted into TP/GALP;
f. no hexose sugar made;
g. no respiratory substrate / respiration stops
[Max 5]
4. (a) Transmit impulses between neurones / from neurone to muscle;
(not: signal)
One direction only / polarity;
Filter out low level stimuli/background;
Protect from over stimulation;
(Act as junctions) / additive effect of stimuli from different neurones/ Spatial summation;

Accept reference to inhibitory synapses;
Temporal summation;
[Max 3]
(b) Nerve net, neurones shorter; branched; can transmit in both directions; facilitation; slower transmission; Stimuli pass in all directions from point of stimulation; non-myelinated; one type of cell. Converse vertebrate. Matched points
[Max 2]
(c) (i) As fibre diameter increases speed of conduction increases;

Much more rapid response in myelinated;
Below a certain diameter (1.1 um) non myelinated faster; (not: Below a certain diameter no conduction) Myelinated linear, non-myelinated rapid at start then plateau; [Max 3]
(ii) Conduct slower than non myelinated.
(iii) Increase diameter; myelination, higher (body) temperature; longer distance between nodes / fewer nodes.
Saltatory conduction
5. (a) (i) cortex
(ii) Water has been absorbed / less volume of water;
(iii) C

B, A
E acc C
F or G
(iv) $\mathrm{A}=$ decrease
$C=$ decrease
D = decrease
$E=$ increase
(b) (i) Loop of Henle longer;

Counter current multiplier; (not: description)
Creates region of (very) low water potential around loop;
More water reabsorbed from collecting duct;
Reference to low filtration rate;
(ii) Metabolic water / water from metabolism;

Respiration;
Fats / oils.
6. (a) A. Lag phase, Log phase / exponential- term in correct context;
B. Induction DNA / gene switching / DNA unzipping;
C. Enzyme production/protein synthesis;
D. Substrate breakdown / getting used to growth medium;
E. Slow population growth;
F. Rapid cell division;
G. Abundance of nutrients / oxygen / low levels of waste products / no environmental resistance;
H. Cell production exceeds cell death; (not: ref. birth/immigration/emigration)
I. Population doubles per unit time;
J. Population increases then begins to slow;
K. Lack of nutrients / accumulation waste products / environmental resistance; (not: ref space)
L. Stationary phase;
M. Cell production = cell death; (not: ref birth, penalise once only)

N carrying capacity;
O. lack of nutrients / accumulation of waste products if not given as K ;

P Death phase;
Q Cell death exceeds cell production;
(b) A. Decomposition / putrefaction;
B. Recycling nutrients;
C. Breakdown of organic materials into inorganic / suitable e.g.;
D. Nitrifying bacteria;
E. Nitrosomonas, Nitrobacter;
F. ammonium compounds to nitrites;
G. nitrites to nitrates;
H. ammonium compounds to nitrates if no F/G;
I. Nitrogen fixing bacteria;
J. atmospheric nitrogen converted into organic nitrogen / e.g.;
K. free living azotobacter;
L. rhizobium;
M. root nodules of (legumes);

N denitrification
O. encourage aerobic conditions (to stop denitrifyers) / ploughing;

P drainage for aerobic conditions to stop denitrifyers;
Q grow leguminous crops / add organic waste products / manure / urea etc;
[Max 2]

